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Abstract. A novel filled function is suggested in this paper for identifying a global minimum point
for a general class of nonlinear programming problems with a closed bounded domain. Theoretical
and numerical properties of the proposed filled function are investigated and a solution algorithm is
proposed. The implementation of the algorithm on several test problems is reported with satisfactory
numerical results.
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1. Introduction

Optimization, as a powerful solution approach, finds wide applications in almost all
fields of engineering, finance, management as well as social science. The existence
of multiple local minima of a general nonconvex objective function makes global
optimization a great challenge (see, e.g., [4, 7, 13]). The literature on global optim-
ization can be classified into three categories. The first category includes methods
that search for a global minimum among the local minima, more specifically, meth-
ods that invoke certain auxiliary functions to move successively from one local
minimum to another better one (see, e.g., [1, 2, 5, 6, 9, 18]). The second category
includes methods that use heuristic or stochastic search (see, e.g., [3, 15]). The third
category includes methods that confine their applicability to problems with special
structures, such as indefinite quadratic programming, concave minimization and
D.C. programming (see, e.g., [7, 8, 14]). Recent work in [10] reveals that via certain
convexification, concavification and monotonization schemes a nonconvex optim-
ization problem with box constraints or over a simplex can be always converted into
an equivalent better-structured nonconvex optimization problem, e.g., a concave
optimization problem or a D.C. programming problem, thus facilitating the search
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of a global optimum by using the existing methods in concave minimization and
D.C. programming. The results in [10] is further extended in [16].

This paper considers the following global optimization problem:

�P� min
x∈X

f �x�

where X⊂�Rn is a closed bounded domain containing all global minimizers of
f �x� in its interior. It is assumed in this paper that f �x� has only a finite number
of local minimizers.

When f 	�Rn→�R is coercive, i.e., f �x�→+� as �x�→+�, then a
global optimization problem:

min
x∈�Rn

f �x�

can be always reduced into an equivalent problem formulation in �P�.
The basin of f �x� at an isolated minimizer of f �x�, x∗1 , is defined in [4, 5]

as a connected domain B∗
1 which contains x∗1 and in which the steepest descent

trajectory of f �x� converges to x∗1 from any initial point. The minimal radius of B∗
1

at an isolated minimizer x∗1 is defined as

R= inf
x 	∈B∗1

�x−x∗1�

Radius R is not zero if the Hessian at x∗1 , �
2f �x∗1�, is positive definite. The basin

of f �x� at x∗1 is said to be lower than another basin of f �x� at x∗0 if and only
if f �x∗1�<f�x

∗
0�. The hill of f �x� at x̂1 is the basin of −f �x� at its isolated

minimizer x̂1.
The concept of the filled functions was introduced by Ge in [5]. Assume that x∗1

is a local minimizer of f �x�. A function p�x�x∗1� is said to be a filled function of
f �x� at the local minimizer x∗1 if it satisfies the following:

(P1) x∗1 is a maximizer of p�x�x∗1� and the whole basin B∗
1 of f �x� at x∗1 becomes

a part of a hill of p�x�x∗1�;
(P2) p�x�x∗1� has no minimizers or saddle points in any basin of f �x� higher than

B∗
1 ;

(P3) if f �x� has a basin B∗
2 at x∗2 that is lower than B∗

1 , then there is a point x′ ∈B∗
2

that minimizes p�x�x∗1� on the line through x∗1 and x′′, for every x′′ in some
neighborhoods of x∗2 .

Note that (P3) in our paper is a revised version of the property (3) in [5]. Prop-
erty (P3) in this paper is much stronger since a minimizer is required for lines
connecting the current minimum with every point in some neighborhoods of a next
better minimum, not just for one such point as required in property (3) in [5].

Adopting the concept of the filled functions, a global optimization problem can
be solved via a two-phase cycle. In Phase 1, we start from a given point and use
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any local minimization method to find a local minimizer x∗1 of f �x�. In Phase 2, we
construct a filled function at x∗1 and minimize the filled function in order to identify
a point x′ with f �x′�<f�x∗1�. If such a x′ is found, x′ is certainly in a lower basin
than B∗

1 . We can then use x′ as the initial point in Phase 1 again, and hence we can
find a better minimizer x∗2 of f �x� with f �x∗2�<f�x

∗
1�. This process repeats until

the time when minimizing a filled function does not yield a better solution. The
current local minimum will be then taken as a global minimizer of f �x�.

Ge specifically proposed the following two-parameter filled function in [5]:

P�x�x∗1�r���=
1

r+f �x� exp
(
−�x−x∗1�2

�2

)
� (1.1)

where the parameters r and � need to be chosen appropriately. Ge and Qin in [6]
noticed an unfavorable property in numerical implementation of the filled function
in (1.1). Since both P�x�x∗1�r��� and �P�x�x∗1�r��� are affected by the term
exp�−�x−x∗1�2/�2�, changes in P�x�x∗1�r��� and �P�x�x∗1�r��� become in-
distinguishable when �x−x∗1� is large. Ge and Qin in [6] tried to overcome this
problem by proposing seven other filled functions: P̃�x�x∗1�r���, G�x�x

∗
1�r���,

G̃�x�x∗1�r���, Q�x�x
∗
1�A�, Q̃�x�x

∗
1�A�, E�x�x

∗
1�A� and Ẽ�x�x∗1�A�, where

P̃�x�x∗1�r��� =
1

r+f �x� exp
(
−�x−x∗1�

�2

)
� (1.2)

G�x�x∗1�r��� = −�2 log�r+f �x��−�x−x∗1�2� (1.3)

G̃�x�x∗1�r��� = −�2 log�r+f �x��−�x−x∗1�� (1.4)

Q�x�x∗1�A� = −�f �x�−f �x∗1��exp�A�x−x∗1�2�� (1.5)

Q̃�x�x∗1�A� = −�f �x�−f �x∗1��exp�A�x−x∗1��� (1.6)

�E�x�x∗1�A� = −�f�x�−2A�f �x�−f �x∗1���x−x∗1�� (1.7)

�Ẽ�x�x∗1�A� = −�f�x�−A�f �x�−f �x∗1��
x−x∗1
�x−x∗1�

� (1.8)

They pointed out that the last four are better choices for filled functions. Neverthe-
less, the expressions of E�x�x∗1�A� and Ẽ�x�x∗1�A� are unknown. It is also evident
that filled functions in forms of (1.5) and (1.6) still suffer the same handicap as
(1.1). Recently, Liu [11] proposed a new filled function to tackle this handicap:

H�x�x∗1�a�=
1

ln�1+f �x�−f �x∗1��
−a�x−x∗1�2� (1.9)

where a is sufficiently large. Notice that the filled function in (1.9) is defined only
for the region where f �x�>f�x∗1�−1. Xu et al [17] proposed a class of filled
functions to deal with the handicap:

U�x�x∗1�A���=−��f �x�−f �x∗1��−A���x−x∗1���� (1.10)



20 LIAN-SHENG ZHANG, CHI-KONG NG, DUAN LI AND WEI-WEN TIAN

where the functions ��·� and ��·� as well as the parameters A and � satisfy some
conditions. However, the method for finding the function ��·� has not been spe-
cified in the paper. The concept of the filled function approach is promising. Its
numerical performance, however, is far from a satisfaction. This consideration
motivates the study reported in this paper.

This paper aims to develop a novel filled function with certain satisfactory
properties in global optimization. This paper is organized as follows. Following
this introduction, a new filled function is proposed in Section 2. The properties of
the new filled function are investigated. In Section 3, numerical implementation is
considered for the proposed new filled function and a solution algorithm is sug-
gested. Application of the new filled-function algorithm to eight test problems is
reported in Section 4 with satisfactory numerical results. Finally, some conclusions
are drawn in Section 5.

2. A new filled function and its properties

We assume in this paper that the function f �x� in �P� is Lipschitz continuous with
constant L in �Rn. When a local minimizer, x∗1 , of f �x� is found, the purpose of
constructing a filled function is to move away from the current local minimizer,
x∗1 , and to find a better minimizer, x∗2 , of f �x� such that f �x∗2�<f�x

∗
1�, or to

determine that the current local minimizer x∗1 is already a global minimizer of f �x�.
We propose in this paper a new two-parameter filled function for problem �P�

at a local minimizer x∗1 as follows,

p�x�x∗1���!� = f �x∗1�−min�f �x∗1��f �x��−��x−x∗1�2

+ !"max�0�f �x�−f �x∗1��#2 � (2.11)

When f �x��f �x∗1�,

p�x�x∗1���!�=!�f �x�−f �x∗1��2−��x−x∗1�2� (2.12)

while when f �x��f �x∗1�,

p�x�x∗1���!�=f �x∗1�−f �x�−��x−x∗1�2� (2.13)

The following lemma and theorems show that p�x�x∗1���!� satisfies the con-
ditions to be qualified as a filled function under some conditions on parameters �
and !. The following Lemma 2.1 is derived first to pave a way to prove that the
local minimizer x∗1 is a strict maximizer of the filled function p�x1�x

∗
1���!� under

certain conditions.

Lemma 2.1. Assume that x∗1 is a local minimizer of f �x� and x1 is a point such
that x1 	=x∗1 and f �x1��f �x

∗
1�. If �>0 and 0�!< �

L2 , then

p�x1�x
∗
1���!�<0=p�x∗1�x∗1���!��
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Proof. The following is evident from (2.12),

p�x1�x
∗
1���!� = −��x1−x∗1�2+!�f �x1�−f �x∗1��2

� −��x1−x∗1�2+!L2�x1−x∗1�2

< 0=p�x∗1�x∗1���!��
�

Theorem 2.1. Assume that x∗1 is a local minimizer of f �x�. If �>0 and 0�!< �

L2 ,
then x∗1 is a strict local maximizer of p�x�x

∗
1���!�.

Proof. Since x∗1 is a local minimizer of f �x�, there is a neighborhood N�x∗1�%1�
of x∗1 with %1>0 such that f �x1��f �x

∗
1� for all x1∈N�x∗1�%1�. Then, by

Lemma 2.1, for all x1∈N�x∗1�%1�, x1 	=x∗1 ,
p�x1�x

∗
1���!�<0=p�x∗1�x∗1���!��

Thus, x∗1 is a strict local maximizer of p�x�x∗1���!�. �

Theorem 2.2. Assume that x∗1 is a local minimizer of f �x�. Suppose that x1 and
x2 are two points such that �x1−x∗1�<�x2−x∗1� and f �x∗1�<f�x1�<f�x2�.
If �>0 and 0�!<min" �

L2 �
�

LM
#, where

M� max
0�'�1

��f�x1+'�x2−x1���
�x2−x1�

�x2−x∗1�−�x1−x∗1�
�

then

p�x2�x
∗
1���!�<p�x1�x

∗
1���!�<0=p�x∗1�x∗1���!��

Proof. Consider

p�x2�x
∗
1���!�−p�x1�x

∗
1���!�

=−���x2−x∗1�2−�x1−x∗1�2�

+!{�f �x2�−f �x∗1��2−�f �x1�−f �x∗1��2
}

=��x2−x∗1�2−�x1−x∗1�2�·{
−�+!�f �x2�−f �x∗1��2−�f �x1�−f �x∗1��2

�x2−x∗1�2−�x1−x∗1�2

}

=��x2−x∗1�2−�x1−x∗1�2�·{
−�+!�f �x2�−f �x∗1�+f �x1�−f �x∗1���f �x2�−f �x1��

��x2−x∗1�+�x1−x∗1����x2−x∗1�−�x1−x∗1��
}

���x2−x∗1�2−�x1−x∗1�2�

{
−�+!L f�x2�−f �x1�

�x2−x∗1�−�x1−x∗1�
}
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=��x2−x∗1�2−�x1−x∗1�2�·{
−�+!L�Tf �x1+'�x2−x1��

x2−x1

�x2−x1�
�x2−x1�

�x2−x∗1�−�x1−x∗1�
}

���x2−x∗1�2−�x1−x∗1�2�·{
−�+!L��f�x1+'�x2−x1���

�x2−x1�
�x2−x∗1�−�x1−x∗1�

}

���x2−x∗1�2−�x1−x∗1�2��−�+!LM�

<0�

Thus, the theorem follows directly from Lemma 2.1. �

We discuss now the existence of an upper bound of M in Theorem 2.2. Since
�f�x� is continuous in X, hence there is a constantM1>0 such that

0� max
0�'�1

��f�x1+'�x2−x1����M1� ∀x1�x2∈X�

Furthermore, from f �x∗1�<f�x1�, x1 	=x∗1 . For given x1 and x2 such that �x1−
x∗1�<�x2−x∗1�, there is a constant )>0 such that �x2−x∗1�−�x1−x∗1��).
LetM2=�x2−x1�/), we have

�x2−x1�
�x2−x∗1�−�x1−x∗1�

�M2�

Therefore,M can be selected to equalM3, whereM3=M1M2.
Theorems 2.1–2.2 reveal that the proposed new filled function satisfies Property

(P1).
To show that the proposed filled function satisfies Property (P2), the following

theorem is derived first.

Theorem 2.3. Assume that x∗1 is a local minimizer of f �x�. Suppose that x1 and
x2 are two points such that �x1−x∗1�<�x2−x∗1� and f �x∗1��f �x2��f �x1�.
If �>0 and 0�!< �

L2 then

p�x2�x
∗
1���!�<p�x1�x

∗
1���!�<0=p�x∗1�x∗1���!��

Proof. Consider

p�x2�x
∗
1���!�−p�x1�x

∗
1���!�

=−���x2−x∗1�2−�x1−x∗1�2�

+!{�f �x2�−f �x∗1��2−�f �x1�−f �x∗1��2
}

<0�

The inequality in the theorem follows from Lemma 2.1. �
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Theorem 2.4. Assume that x∗1 is a local minimizer of f �x�. Suppose that x1 is a
point such that f �x1�>f�x

∗
1�. If �>0 and 0�!<min" �

L2 �
�

LM
#, then for

any small )1>0, there exists d1 such that 0<�d1��)1, �x1−d1−x∗1�<�x1−x∗1�<�x1+d1−x∗1�, f �x1±d1��f �x
∗
1� and p�x1+d1�x

∗
1���!�<

p�x1�x
∗
1���!�<p�x1−d1�x

∗
1���!�<0=p�x∗1�x∗1���!�.

Proof. For a given )1>0, let

d1=)2

x1−x∗1
�x1−x∗1�

�

where 0<)2�)1. Then 0<�d1��)1. Furthermore, if )1 is sufficiently small
and the condition onM in Theorem 2.2 holds, then

�x1+d1−x∗1�=�1+)��x1−x∗1�>�x1−x∗1��
�x1−d1−x∗1�=�1−)��x1−x∗1�<�x1−x∗1��
f �x1±d1��f �x

∗
1�

where )=)2/�x1−x∗1�. Hence, if

�>0 and 0�!<min" �

L2 �
�

LM
#�

then the following holds from Theorem 2.2 and Theorem 2.3, p�x1+d1�x
∗
1���!�<

p�x1�x
∗
1���!�<p�x1−d1�x

∗
1���!�<0=p�x∗1�x∗1���!�. �

The implication of Theorem 2.4 is clear: Any point x1 with f �x1�>f�x
∗
1�

will never be a local minimizer of p�x�x∗1���!� when �>0 and 0�!<
min" �

L2 �
�

LM
#. The following theorem further reinforces the above conclusion.

Theorem 2.5. Assume that x∗1 is a local minimizer of f �x�. Suppose that x1 is a
point such that f �x1�>f�x

∗
1�. If �>0 and if !�0 is sufficiently small, then

�p�x1�x
∗
1���!� 	=0, i.e., x1 is not a stationary point of p�x�x

∗
1���!�.

Proof. When f �x1�>f�x
∗
1�,

�p�x1�x
∗
1���!�=−2��x1−x∗1�+2!�f �x1�−f �x∗1���f �x1��

Consider the following two cases:

1. If �f�x1�=0, then �p�x1�x
∗
1���!�=−2��x1−x∗1� 	=0.

2. If �f�x1� 	=0, let

d= x1−x∗1
�x1−x∗1�

−) �f�x1�

��f�x1��
�
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where )>0 is sufficiently small. Then, the following holds,

�Tp�x1�x
∗
1���!�d

=−2��x1−x∗1�+2�)�x1−x∗1�T
�f �x1�

��f�x1��
+2!�f �x1�−f �x∗1���Tf �x1�

x1−x∗1
�x1−x∗1�

−2!)�f �x1�−f �x∗1����f�x1���
(a) If �x1−x∗1�T�f �x1��0, then �Tp�x1�x

∗
1���!�d<0 and therefore

�p�x1�x
∗
1���!� 	=0.

(b) If �x1−x∗1�T�f �x1�>0, then choose !�0 to be sufficiently small. Since
)>0 is chosen to be sufficiently small, thus �Tp�x1�x

∗
1���!�d<0. There-

fore, �p�x1�x
∗
1���!� 	=0.

We can conclude that any point x1 with f �x1�>f�x
∗
1� will never be a stationary

point of p�x�x∗1���!� when �>0 and ! is very small. �

Theorem 2.6. Assume that x∗1 is a local minimizer of f �x�. If �>0 and if !�0 is
sufficiently small, then any local minimizer or saddle point of p�x�x∗1���!� must
belong to the set S="x∈�Rn 	f �x��f �x∗1�#.

Proof. If the theorem is not true, then there is a local minimizer or saddle point
of p�x�x∗1���!�, x̄

∗
1 , such that x̄∗1 	∈S and f �x̄∗1�>f�x

∗
1�. Since x∗1 is a strict

local maximizer of p�x�x∗1���!� and x̄∗1 is a local minimizer or saddle point
of p�x�x∗1���!�, thus x∗1 	= x̄∗1 . If x̄∗1 is a local minimizer of p�x�x∗1���!�, it
contradicts Theorem 2.4 when �>0 and 0�!<min" �

L2 �
�

LM
#. Similarly, if

x̄∗1 is a saddle point of p�x�x∗1���!�, it contradicts Theorem 2.5 when �>0 and
!�0 is sufficiently small. Consequently, the theorem is true. �

In summary, the filled function proposed in (2.11) does satisfy property (P2)
that it has no minimizers or saddle points in any higher basin of f �x�.

Theorem 2.7. Assume that x∗1 is a local minimizer of f �x�. If x
∗
2 is another local

minimizer of f �x� satisfying f �x∗2�< f�x
∗
1�, then there is a neighborhoodN�x

∗
2�%2�

of x∗2 with %2 > 0 such that p�x�x∗1���!� has a minimizer, x
′, on the line segment

connecting x∗1 and x2 for every x2∈N�x∗2�%2� when 0�!< �

L2 and 0<�<
)1
D1

where 0<)1<f�x
∗
1�−f �x2� and D1=maxx∈N�x∗2 �%2�

�x−x∗1�2. Moreover, if
there does not exist any basin lower than B∗

1 between B
∗
1 and B

∗
2 , where B

∗
1 and B

∗
2

are the basins of f �x� at x∗1 and x
∗
2 , respectively, then x

′ ∈B∗
2 and f �x

′��f �x∗1�.

Proof. From Theorem 2.1, there is a neighborhood N�x∗1�%1� of x∗1 with %1>
0 such that for all x1∈N�x∗1�%1� and x1 	=x∗1 , we have the following when �>0
and 0�!< �

L2 ,

p�x1�x
∗
1���!�<0=p�x∗1�x∗1���!��
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Furthermore, there is a neighborhood N�x∗2�%2� of x∗2 with %2>0 such that
f �x∗1�−f �x2�>)1>0 for all x2∈N�x∗2�%2�. Thus,

p�x2�x
∗
1���!�=f �x∗1�−f �x2�−��x2−x∗1�2>)1−�D1�

Therefore, if �< )1
D1

then p�x2�x
∗
1���!�>0. The filled function p�x�x∗1���!�

is decreasing along the line connecting x∗1 and x2 when starting from x∗1 . The
continuity of p�x�x∗1���!� implies that p�x�x∗1���!� has a minimizer on the line
segment connecting x∗1 and x2 for all x2∈N�x∗2�%2�.

Let xB be the boundary point of B∗
2 on the line segment. If there does not exist

any basin lower than B∗
1 between B∗

1 and B∗
2 , then f �xB�>f�x

∗
1�. Thus, by

continuity of f �x�, there are three points x−0 �x0�x
+
0 ∈B∗

2 on the line segment
such that f �x0�=f �x∗1� and f �xB�>f�x

−
0 ��f �x0��f �x

+
0 �>f�x2� where

x−0 =x0−%�x0−x∗1� and x+0 =x0+%�x0−x∗1� provided %>0 is sufficiently
small. Since p�x0�x

∗
1���!�=−��x0−x∗1�2<0, hence x0 	∈N�x∗2�%2� from the

previous discussion. Now, we consider the following two cases:
1. If p�x0�x

∗
1���!�>p�x

+
0 �x

∗
1���!�, then x0−x∗1 is a decent direction of

p�x�x∗1���!� at x0. Therefore, x′ ∈B∗
2 and f �x′��f �x∗1�.

2. If p�x0�x
∗
1���!��p�x

+
0 �x

∗
1���!�, since �x−0 −x∗1�<�x0−x∗1� and

f �x−0 ��f �x0�, thus, by Theorem 2.3, 0>p�x−0 �x
∗
1���!�>p�x0�x

∗
1���!�

when �>0 and 0�!< �

L2 . Hence, x0−x∗1 is a decent direction of
p�x�x∗1���!� at x−0 . Therefore, x′ ≡x0∈B∗

2 and f �x′�=f �x∗1�.
�

Theorems 2.6–2.7 clearly state that the proposed filled function satisfies Prop-
erty (P3). Moreover, the filled function proposed in this paper has a prominent
feature: Unlike the filled function suggested in Ge [5] and Liu [11], our filled
function guarantees its minimum to be always achieved at a point where its function
value is not higher than the function value of the current minimum.

Theorem 2.8. Assume that x∗1 is a global minimizer of f �x�. If �>0 and 0�
!< �

L2 then p�x�x∗1���!�<0 for all x∈X.

Proof. Since x∗1 is a global minimizer of f �x�, f �x��f �x∗1� for all x∈X.
Thus, by Lemma 2.1, p�x�x∗1���!�<0 for all x∈X when �>0 and 0�!<
�

L2 . �

3. Numerical implementation and solution algorithm

The theoretical properties of the proposed filled function p�x�x∗1���!� were dis-
cussed in the last section. The development in this section is to further study the
properties of the proposed filled function in numerical implementation and to sug-
gest an efficient algorithm. Three search directions are investigated first such that
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one can start at an initial point x�0�1 ∈X\N�x∗1�%1� for some %1>0 to escape from
the current local minimum x∗1 and to minimize the proposed filled function along
the search directions in order to reach a point x�k�1 with f �x

�k�
1 �<f�x∗1�. Then,

one can use x�k�1 as an initial point in a local search to find a better local minimizer
x∗2 with f �x∗2�<f�x

∗
1�. The algorithm is repeated in a two-phase iterative fashion

until a global solution is identified (no better local solution can be found).

3.1. SEARCH DIRECTIONS IN NUMERICAL IMPLEMENTATION

How to decide a search direction in finding another better local minimum is a key
to the success in a filled function approach. Let x∗1 be the current local minimum,
x
�i�
1 the current iterative point, and d�i�1 the search direction. The discussion in this

subsection will lead to a conclusion that a good search direction should satisfy
�x

�i�
1 −x∗1�Td�i�1 >0.

Theorem 3.1. For two given constants 'L and 'U with 0<'L<'U , let x
�i�
1 ∈

X and x
�i+1�
1 =x�i�1 +d�i�1 ∈X where d�i�1 is a search direction at x�i�1 such that

'L��d�i�1 ��'U . Let /�i�1 be the angle between x
�i�
1 −x∗1 and d

�i�
1 . Then the

following are equivalent.

1. �x�i+1�
1 −x∗1�>�x�i�1 −x∗1�.

2. 2�x�i�1 −x∗1�Td�i�1 +�d�i�1 �2>0.

3. cos/�i�1 >− �d�i�1 �
2�x�i�1 −x∗1�

.

4. �x�i�1 −x∗1�Td�i�1 +�x�i+1�
1 −x∗1�Td�i�1 >0.

In particular, if �x�k�1 −x∗1�Td�k�1 �0�∀k=0�1�����i−1, then �x�i�1 −x∗1�2� i'2
L+

�x�0�1 −x∗1�2.

Proof. Observe the following equalities:

�x�i+1�
1 −x∗1�2−�x�i�1 −x∗1�2 =�x�i�1 −x∗1+d�i�1 �2−�x�i�1 −x∗1�2

=2�x�i�1 −x∗1�Td�i�1 +�d�i�1 �20

2�x�i�1 −x∗1�Td�i�1 +�d�i�1 �2 =�2�x�i�1 −x∗1�cos/�i�1 +�d�i�1 ���d�i�1 �0

2�x�i�1 −x∗1�Td�i�1 +�d�i�1 �2 = ��x�i�1 −x∗1�+�x�i�1 −x∗1+d�i�1 ��
Td

�i�
1

=�x�i�1 −x∗1�Td�i�1 +�x�i+1�
1 −x∗1�Td�i�1 �
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Hence the following are equivalent:

0 <�x�i+1�
1 −x∗1�2−�x�i�1 −x∗1�20

0 <2�x�i�1 −x∗1�Td�i�1 +�d�i�1 �20

0 <�2�x�i�1 −x∗1�cos/�i�1 +�d�i�1 ���d�i�1 �0
0 <�x

�i�
1 −x∗1�Td�i�1 +�x�i+1�

1 −x∗1�Td�i�1 �

Consequently, Items 1–4 are equivalent.
In particular, if �x

�k�
1 −x∗1�Td�k�1 �0�∀k=0�1�����i−1, then 2�x�k�1 −

x∗1�
Td

�k�
1 +�d�k�1 �2>0 and hence �x�k+1�

1 −x∗1�>�x�k�1 −x∗1�. Therefore,

�x�i�1 −x∗1�2−�x�0�1 −x∗1�2

=��x�i�1 −x∗1�2−�x�i−1�
1 −x∗1�2�+��x�i−1�

1 −x∗1�2−�x�i−2�
1 −x∗1�2�

+···+��x�1�1 −x∗1�2−�x�0�1 −x∗1�2�

=
[
2�x�i−1�

1 −x∗1�Td�i−1�
1 +�d�i−1�

1 �2
]

+
[
2�x�i−2�

1 −x∗1�Td�i−2�
1 +�d�i−2�

1 �2
]

+···+
[
2�x�0�1 −x∗1�Td�0�1 +�d�0�1 �2

]
� i'2

L�

�

From Theorem 3.1, we can conclude that if a search direction d�i�1 is chosen
to satisfy �x�i�1 −x∗1�Td�i�1 �0, the search will reach the boundary of X when the
number of iterations is sufficiently large provided no better point in a lower basin
is found before that happens.

Theorem 3.2. Let d 	=0 be a search direction at x∈X where f �x�>f�x∗1�.
Suppose that �>0 and !�0. Then dT�p�x�x∗1���!�<0 if and only if one of
the following conditions holds:
1. dT �x−x∗1�>0 and !=0.
2. dT �x−x∗1�>0, dT�f �x�>0 and !<�dT�x−x∗1�/"�f �x�−f �x∗1��dT�f �x�#.
3. dT �x−x∗1�>0 and dT�f �x��0.
4. dT �x−x∗1�=0, dT�f �x�<0 and !>0.
5. dT �x−x∗1�<0, dT�f �x�<0 and !>�dT�x−x∗1�/"�f �x�−f �x∗1��dT�f �x�#.
Proof. We have

0 > dT�p�x�x∗1���!�

= −2�dT �x−x∗1�+2!�f �x�−f �x∗1��dT�f �x��
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Since �>0 and !�0, the theorem follows from the fact that the 5 listed mutually
exclusive situations cover all the circumstances for dT�p�x�x∗1���!�<0. �

Theorem 3.2 lists all possible circumstances for descent directions of
p�x�x∗1���!�. It is easy to see that these search directions d satisfying dT �x−x∗1��
0 are more restrictive than those with dT �x−x∗1�>0. More specifically, no descent
direction of p�x�x∗1���!� can satisfy both dT �x−x∗1��0 and dT�f �x��0 at the
same time. We can conclude that these search directions d satisfying dT �x−x∗1�>0
are better candidates to serve as descent directions for p�x�x∗1���!�, since they are
always applicable no matter whether dT�f �x� is positive or negative.

In the following, three specific search directions and their properties are invest-
igated.

Search direction D1 and its properties

Let D1=x−x∗1 be a search direction at x∈X where f �x�>f�x∗1�. Then D1

has the following properties:
1. DT

1 �x−x∗1�>0.
2. From Conditions 1–3 of Theorem 3.2, if �>0, !�0, DT

1 �f�x�>0 and
DT

1 �p�x�x
∗
1���!��0, then ! has been selected to be too large

�!�
�DT

1 �x−x∗1�
�f �x�−f �x∗1��DT

1 �f�x�
��

Search direction D2 and its properties

Let D2=−�p�x�x∗1���!� be a search direction at x∈X where �>0, !�0
and f �x�>f�x∗1�. Then D2 has the following properties:
1. If D2=0, then we can conclude from Theorem 2.2 and Theorem 2.3 that !

has not been selected sufficiently small.
2. If D2 	=0, then DT

2 �p�x�x
∗
1���!�<0. Therefore, one of the conditions

listed in Theorem 3.2 holds.
3. If !=0, then D2=2�D1.

Search direction D3 and its properties

Let

D3=− �f�x�

��f�x�� −
�p�x�x∗1���!�
��p�x�x∗1���!��

be a search direction at x∈X where �>0, !�0, f �x�>f�x∗1�, ��f�x�� 	=0
and ��p�x�x∗1���!�� 	=0.

Theorem 3.3. If D3 	=0, then D3 has the following properties:
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1. DT
3 �f�x�<0 and DT

3 �p�x�x
∗
1���!�<0.

2. Exact one of the following conditions holds:

(a) DT
3 �x−x∗1�>0.

(b) DT
3 �x−x∗1�=0 and !>0.

(c) DT
3 �x−x∗1�<0 and !>

�DT3 �x−x∗1�
�f �x�−f �x∗1��DT3 �f�x�

.

Proof.

1. Let / be the angle between �f�x� and �p�x�x∗1���!�. ConditionD3=0 implies

0= �f�x�

��f�x�� +
�p�x�x∗1���!�
��p�x�x∗1���!��

which is equivalent to

−1= �Tf �x��p�x�x∗1���!�
��f�x����p�x�x∗1���!��

=cos/�

Thus, D3 	=0 is equivalent to cos/ 	=−1.
Therefore,

�Tf �x�D3 =−��f�x��− �T f�x��p�x�x∗1 ���!�
��p�x�x∗1 ���!��

=−��f�x���1+cos/�<0�

Similarly,

�Tp�x�x∗1���!�D3 =−�T p�x�x∗1 ���!��f �x�
��f�x�� −��p�x�x∗1���!��

=−��p�x�x∗1���!���cos/+1�<0�

2. If D3 	=0, then DT
3 �p�x�x

∗
1���!�<0 is equivalent to

−�DT
3 �x−x∗1�+!�f �x�−f �x∗1��DT

3 �f�x�<0

where DT
3 �f�x�<0. By listing all the combinations of the terms, the condi-

tions are clear.

�

3.2. ALGORITHM

Based on the results in the previous subsection, a solution algorithm is proposed as
follows.
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1. Starting from an initial point x1∈X, minimize f �x� and obtain the first local
minimizer x∗1 of f �x�.

2. Initialization:
(a) Choose a tolerance )>0, e.g., set )	=10−4.
(b) Choose a lower bound of � such that �L>0, e.g., set �L 	=10−3.
(c) The lower bound of ! is 0. Choose a second lower bound of ! such that

!L>0, e.g., set !L 	=10−8.
(d) Choose a fraction �̂>0, e.g., set �̂ 	=0�1.
(e) Choose a fraction !̂>0, e.g., set !̂ 	=0�1.
(f) Choose �>0, e.g., set �	=1.
(g) Set k 	=1.

3. Choose a set of initial points "x
�0�i
k+1 	 i=1�2�����m# such that x�0�ik+1∈X\

N�x∗k�%k� for some %k>0.
4. Choose !�0, e.g., set !	=�.
5. Set i 	=1.
6. (a) If i�m, then set x 	=x�0�ik+1 and go to 7.

(b) Otherwise, go to 14.
7. (a) If f �x�<f�x∗k�, then use x as an initial point for a local minimization

method to find x∗k+1 such that f �x∗k+1�<f�x
∗
k�. Then, set k 	=k+1 and

go to 3.
(b) Otherwise, go to 8.

8. (a) If ��p�x�x∗k���!���n), go to 9.
(b) Otherwise, go to 13.

9. If all the following conditions hold, select

D3=− �f�x�

��f�x�� −
�p�x�x∗k���!�
��p�x�x∗k���!��

as the search direction and go to 10; otherwise, go to 11.

(a) ��f�x���n);
(b) �D3��n);
(c) DT

3 �x−x∗k��0;
(d) �Tf �x��p�x�x∗k���!�>0.

10. Find a new x in the direction D3 such that both p�x�x∗k���!� and f �x� can
reduce to certain extents.
(a) If x attains the boundary of X during minimization, then set i 	= i+1 and

go to 6.
(b) Otherwise, go to 7.

11. (a) IfDT
2 �x−x∗k��0 whereD2=−�p�x�x∗k���!�, then selectD2 as the search

direction and go to 12.
(b) Otherwise, go to 13.

12. Find a new x in the direction D2 such that p�x�x∗k���!� can reduce to certain
extent.
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(a) If x attains the boundary of X during minimization, then set i 	= i+1 and
go to 6.

(b) Otherwise, go to 7.

13. Reduce ! by setting !	= !̂!.
(a) If !�!L, then go to 5.
(b) Otherwise, set !	=0 and go to 5.

14. Reduce � by setting �	= �̂�.
(a) If ���L, then go to 4.
(b) Otherwise, the algorithm is incapable of finding a better minimizer starting

from the initial points, "x�0�ik+1#. The algorithm stops and x∗k is taken as a
global minimizer.

The motivation and mechanism behind the algorithm are explained below.
A set of m initial points is chosen in Step 3 to minimize the filled function. If no

additional information about the objective function is provided, we set the initial
points symmetric about the current local minimizer. For example, when n=2, the
initial points are: x∗k+2×�cos�2�i−1�3/m��sin�2�i−1�3/m��, where 2>0 is
a pre-selected step-size.

Step 7 represents a transition from minimizing the filled function p�x�x∗k���!�
to a local search for the original objective function f �x� when a point x with
f �x�<f�x∗k� is found. It can be concluded from Theorem 2.7 that this point x
must be in a lower basin of f �x�. We can thus use x as the initial point to minimize
f �x� in this lower basin and obtain a better local minimizer.

Step 8 guarantees that �p�x�x∗k���!� 	=0 when f �x�>f�x∗k�. If
�p�x�x∗k���!�=0, it can be concluded from Theorem 2.5 that ! is not chosen
small enough. The algorithm then goes to Step 13 and the value of ! is reduced.

Step 9 checks if D3 is a more desirable search direction than D2. First, Items
9(a)–(b) ensure that D3 is definite (based on the definition of D3). Then, Item 9(c)
guarantees that the search will reach the boundary of X when the number of itera-
tions is sufficiently large provided no better point in a lower basin is found before
that happens (Theorem 3.1). Finally, Item 9(d) ensures that the angle between
�f�x� and �p�x�x∗k���!�, /, is acute. From Theorem 3.3, a property of D3 is
DT

3 �f�x�<0. This implies that D3 should not be used as a direction to escape
from a basin. If the search is entering a basin, then / must be an acute angle andD3

would be a good search direction. On the contrary, if the search is leaving a basin,
then / must be an obtuse angle and D3 is not a search direction as good as D2.

If D3 is selected as the search direction in Step 9, then there is a new point in
the direction D3 such that both p�x�x∗k���!� and f �x� can be reduced to certain
extent (Property 1 of D3). Step 10 finds such a new x so that it can be used to
minimize the filled function in a recursive fashion.

However, if D3 is not selected as the search direction in Step 9, Step 11 ensures
that the search along D2 will reach the boundary of X when the number of itera-
tions is sufficiently large provided no better point in a lower basin is found before
that happens (Theorem 3.1).
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Step 12 finds a new x in the direction D2 such that p�x�x∗k���!� can reduce
to certain extent (Property 2 of D2). Then, one can use the new x to minimize the
filled function again.

Recall from Theorem 2.7 that the value of � should be selected small enough.
Otherwise, there could be no minimizer of p�x�x∗k���!� in a better basin. Thus,
the value of � is reduced successively in Step 14 of the solution process if no better
solution is found when minimizing the filled function. If the value of � reaches
its lower bound �L and no better solution is found, the current local minimizer is
taken as a global minimizer.

Similar argument applies to !. The value of ! should be selected small enough
(less than min" �

L2 �
�

LM
#). Thus, the value of ! is reduced successively in Step 13

of the solution process when certain step fails. When ! needs to be reduced further
at !L, ! is assigned to zero.

4. Numerical experiment

In this section, the proposed algorithm is examined on eight test problems taken
from the literature. A set of Matlab programs is written on UNIX platform to
implement the tests. The Matlab function ‘fmincon’ is used in the algorithm to
find local minimizers of the objective function.

The computational results are summarized in tables for each example problem.
The symbols used in the tables are given as follows:

k 	 The iteration number in finding the k-th local minimizer
x
�0�
k 	 The starting point in the k-th iteration in finding the k-th local

minimizer. Specifically, the starting point in the �k+1�-th itera-
tion, x�0�k+1, is equal to the local minimizer x∗k achieved in the k-th
iteration plus a small perturbation specified in Step 3 of the algo-
rithm. We only display the successful initial point in the tables
which leads to the minimizer in the �k+1�-th iteration.

��!	 The parameters used for finding the k-th local minimizer
x∗k: The k-th local minimizer
f �x∗k�: The function value of the k-th local minimizer

Problem 1 (Two-dimensional function in [19]).

min f �x�= �1−2x2+csin�43x2�−x1�
2+�x2−0�5sin�23x1��

2�

s�t� 0�x1�10� −10�x2�0�

where c=0�2�0�5�0�05.

The proposed filled function approach succeeds in identifying the global min-
imum solutions: f �x∗�=0 for all c, with m=4 and 2=0�1. The computational
results are summarized in Tables I–III, for c=0�2�0�5�0�05, respectively.
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Figure 1. Contours and search-paths of Problem 1 with c=0�2

A detailed search process of Problem 1 with c=0�2 is displayed in Figure 1.
The symbols used in the figure are given as follows:

∗: Local minimizer
×——×: Search-path of the filled function
×···∗: Local search using “fmincon"
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Problem 2 (Three-hump back camel function in [5]).

min f �x�=2x2
1−1�05x4

1+
1
6
x6

1−x1x2+x2
2�

s�t� −3�x1�3� −3�x2�3�

Two initial points x = �−2�−1� and �2�1� are used. The proposed filled function
approach succeeds in identifying the global minimum solution: x∗=�0�0� and
f �x∗�=0, with m=4 and 2=0�1. The computational results are summarized in
Tables IV and V, respectively.

Problem 3 (Six-hump back camel function in [5]).

min f �x�=4x2
1−2�1x4

1+
1
3
x6

1−x1x2−4x2
2+4x4

2�

s�t� −3�x1�3� −3�x2�3�

Three initial points x = �−2�1�, �2�−1�, and �−2�−1� are used. The proposed
filled function approach succeeds in identifying the global minimum solutions:

x∗=�0�0898420131003�0�712656403021�

or �−0�0898420131003�−0�712656403021�

where f �x∗�=−1�03162845349, with m=4 and 2=0�1. The computational
results are summarized in Tables VI–VIII, respectively.

Problem 4 (Treccani function in [5]).

min f �x�=x4
1+4x3

1+4x2
1+x2

2�

s�t� −3�x1�3� −3�x2�3�

The proposed filled function approach succeeds in identifying a global min-
imum solution: x∗=�0�0� where f �x∗�=0, with m=4 and 2=0�1. The
computational results are summarized in Table IX.

Problem 5 (Goldstein and Price function in [5]).

min f �x�=g�x�h�x��
s�t� −3�x1�3� −3�x2�3�

where

g�x�=1+�x1+x2+1�2�19−14x1+3x2
1−14x2+6x1x2+3x2

2��

h�x�=30+�2x1−3x2�
2�18−32x1+12x2

1+48x2−36x1x2+27x2
2��

The proposed filled function approach succeeds in identifying the global
minimum solution: x∗=�0�−1� and f �x∗�=3, with m=4 and 2=0�1. The
computational results are summarized in Table X.
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Problem 6 (Two-dimensional Shubert function in [5]).

min f �x�=
{

5∑
i=1

icos��i+1�x1+i�
}{

5∑
i=1

icos��i+1�x2+i�
}
�

s�t� 0�x1�10� 0�x2�10�

The proposed filled function approach succeeds in identifying the global
minimum solutions: x∗=�5�48286420671�4�85805687886� or �4�85805687886,
5�48286420671� where f �x∗�=−186�730908831, with m=4 and 2=0�1. The
computational results are summarized in Table XI.

Problem 7 (Shekel’s function in [12]).

min f �x�=−
5∑
i=1

[
4∑
j=1

�xj−ai�j�2+ci
]−1

�

s�t� 0�xj�10� j=1�2�3�4�

where the coefficients ai�j , ci, i=1�2�3�4�5, j=1�2�3�4 are given in the
following:

i ai�1 ai�2 ai�3 ai�4 ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.3
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.5

Two initial points x = �1�1�1�1� and �6�6�6�6� are used. The proposed filled
function approach succeeds in identifying the global minimum solution:

x∗=�4�00003715282�4�00013327659�4�00003715282�4�00013327659�

and f �x∗�=−10�15319967906, with m=80 and 2=0�1. The computational
results are summarized in Tables XII and XIII, respectively.

Problem 8 (n-dimensional function in [5]).

min f �x�= 3

n
�10sin23x1+g�x�+�xn−1�2��

s�t� −10�xi�10� i=1�2�����n�

where

g�x�=
n−1∑
i=1

��xi−1�2�1+10sin23xi+1���
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Figure 2. Contours of f �x� and the ranges of success in Problem 2.

Five sizes of the problem are considered in the test, n=2�3�5�7�10. The
proposed filled function approach succeeds in identifying the global minimum
solutions: x∗=�1�1�����1� and f �x∗�=0 for all n, with m=2n and 2=0�1.
The computational results are summarized in Tables XIV–XVIII, respectively.

5. Conclusions

A new version of a filled function is proposed in this paper with much improved
performance in finding a global minimum solution. Compared to the local search
where the local information, such as the gradient and Hessian, can be used to
determine a search direction, there is always a lack of global information in de-
termining a search direction in global optimization. In our algorithm, a better
minimum is sought starting from a set of initial points that are symmetry to the
current minimum point. Selection of the parameters � and ! affects the size of the
range starting from which a search will succeed in locating another better local
minimum. For example, in Problem 2 (see Figure 2), if � and ! are assigned to
1 and 0.1, respectively, the range of success is from −18� to 56� (a total of 74�).
On the other hand, if � and ! are assigned to 1 and 0, respectively, the range of
success is from −13� to 51� (a total of 64�) only. Although the successful rate in
finding another better minimum will be increased by increasing the density of the
initial points, this growth in number of initial points, unfortunately, is exponential
with respect to the dimension of the problem. Indeed, if the number of grid points
in each plane is 4k�k�1, the total number of initial points is at least 2n, for k=1,
and ��2k−1�n−1�/�k−1�, for k>1. For example, suppose that the problem
dimension is n=3 and the number of grid points in each plane is 4 (k=1), then
the minimum number of initial points is 6 only. However, if the number of grid
points in each plane is 8 (k=2), then the total number of initial points becomes
at least 26. For large-scale problems, some global structural information of the
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problem must be used to reduce this curse of dimensionality and to facilitate the
identification of a global search direction.
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Table I. Computational results for problem 1 with c=0�2

k x
�0�
k � ! x∗k f �x∗k�

1 (6, -2) – – (5.7221, -1.8806) 2.5070
2 x∗1 −�0�1�0� 1 1e-3 (4.7387, -1.7417) 1.6212
3 x∗2 +�0�0�1� 1 1e-3 (4.7096, -1.3985) 1.3566
4 x∗3 −�0�1�0� 1 1e-3 (3.7387, -1.2649) 0.61647
5 x∗4 −�0�1�0� 1 1e-3 (2.7380, -0.78836) 0.088673
6 x∗5 −�0�1�0� 1 1e-3 (1.8784, -0.34585) 0

Table II. Computational results for Problem 1 with c=0�5

k x
�0�
k � ! x∗k f �x∗k�

1 (0, 0) – – (0.042023, -0.094772) 0.51745
2 x∗1 +�0�1�0� 1 1 (0.99991, -1.2524e-4) 2.2389e-7
3 x∗2 +�0�0�1� 1 1e-1 (1.0000, -2.2205e-14) 0

Table III. Computational results for Problem 1 with c=0�05

k x
�0�
k � ! x∗k f �x∗k�

1 (10, -10) – – (8.7299, -3.2965) 9.0733
2 x∗1 −�0�1�0� 1 1e-3 (7.7280, -2.8347) 6.5031
3 x∗2 −�0�1�0� 1 1e-3 (6.7248, -2.3724) 4.3943
4 x∗3 −�0�1�0� 1 1e-3 (5.7198, -1.9162) 2.7434
5 x∗4 −�0�1�0� 1 1e-3 (4.7129, -1.4891) 1.5351
6 x∗5 −�0�1�0� 1 1e-3 (3.7305, -1.2306) 0.61844
7 x∗6 −�0�1�0� 1 1e-3 (2.7300, -0.79341) 0.10216
8 x∗7 −�0�1�0� 1 1e-3 (1.8513, -0.40209) 0

Table IV. Computational results for Problem 2 with initial point �−2�−1�

k x
�0�
k � ! x∗k f �x∗k�

1 (-2, -1) – – (-1.7476, -0.87378) 0.29864
2 x∗1 +�0�1�0� 1 1e-1 (0, 0) 0
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Table V. Computational results for Problem 2 with initial point �2�1�

k x
�0�
k � ! x∗k f �x∗k�

1 (2, 1) – – (1.7476, 0.87378) 0.29864
2 x∗1 −�0�1�0� 1 1e-4 (0, 0) 0

Table VI. Computational results for Problem 3 with initial point �−2�1�

k x
�0�
k � ! x∗k f �x∗k�

1 (-2, 1) – – (-1.6071, 0.56865) 2.1043
2 x∗1 +�0�1�0� 1 1 (0.089842, 0.71266) -1.0316

Table VII. Computational results for problem 3 with initial point �2�−1�

k x
�0�
k � ! x∗k f �x∗k�

1 (2, -1) – – (1.6071, -0.56865) 2.1043
2 x∗1 −�0�1�0� 1 1e-5 (-0.089842, -0.71266) -1.0316

Table VIII. Computational results for Problem 3 with initial point �−2�−1�

k x
�0�
k � ! x∗k f �x∗k�

1 (-2, -1) – – (-1.7036, -0.79608) -0.21546
2 x∗1 +�0�1�0� 1 1e-1 (-0.089842, -0.71266) -1.0316

Table IX. Computational results for Problem 4

k x
�0�
k � ! x∗k f �x∗k�

1 (-1, 0) – – (-1.0000, 0) 1.0000
2 x∗1 +�0�1�0� 1 1 (0, 0) 0

Table X. Computational results for Problem 5

k x
�0�
k � ! x∗k f �x∗k�

1 (-1, -1) – – (-0.60000, -0.40000) 30.000
2 x∗1 +�0�1�0� 1 1e-5 (0, -1.0000) 3.0000
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Table XI. Computational results for Problem 6

k x
�0�
k � ! x∗k f �x∗k�

1 (1, 1) – – (1.0865, 1.0865) 2.8841e-17
2 x∗1 +�0�1�0� 1 1 (1.3200, 1.8703e-12) -13.052
3 x∗2 +�0�0�1� 1 1e-5 (1.3200, 4.8581) -37.681
4 x∗3 +�0�1�0� 1 1e-5 (3.2800, 4.8581) -46.511
5 x∗4 +�0�1�0� 1 1e-5 (4.2760, 4.8581) -79.411
6 x∗5 +�0�1�0� 1 1e-6 (5.4829, 4.8581) -186.73

Table XII. Computational results for Problem 7 with initial point �1�1�1�1�

k x
�0�
k � ! x∗k f �x∗k�

1 (1, 1, 1, 1) – –
(1.0001, 1.0002,
1.0001, 1.0002)

-5.0552

2
x∗1 +0�1�cos� 34 �, sin� 34 �cos� 34 �,

sin2� 34 �cos� 34 �, sin3� 34 ��
1 1e-2

(4.0000, 4.0001,
4.0000, 4.0001)

-10.153

Table XIII. Computational results for Problem 7 with initial point �6�6�6�6�

k x
�0�
k � ! x∗k f �x∗k�

1 (6, 6, 6, 6) – –
(5.9987, 6.0003,
5.9987, 6.0003)

-2.6829

2
x∗1 +0�1�cos� 34 �, sin� 34 �cos� 34 �,

sin2� 34 �cos� 34 �, sin3� 34 ��
1 1e-1

(7.9996, 7.9996,
7.9996, 7.9996)

-5.1008

3
x∗2 +0�1�cos� 33

4 �, sin� 33
4 �cos� 33

4 �,
sin2� 33

4 �cos� 53
4 �, sin2� 33

4 �sin�
53
4 ��

1 1e-2
(4.0000, 4.0001,
4.0000, 4.0001)

-10.153
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Table XIV. Computational results for Problem 8 with n=2

k x
�0�
k � ! x∗k f �x∗k�

1 (-4, -4) – – (-3.9490, -3.9979) 78.126
2 x∗1 +�0�1�0� 1 1e-3 (-2.9594, -3.9968) 64.124
3 x∗2 +�0�1�0� 1 1e-3 (-0.97956, -3.9871) 45.389
4 x∗3 +�0�1�0� 1 1e-4 (0.012700, -3.9476) 40.418
5 x∗4 +�0�1�0� 1 1e-4 (1.0000, 1.0000) 0

Table XV. Computational results for Problem 8 with n=3

k x
�0�
k � ! x∗k f �x∗k�

1 (-3, -3, -3) – – (-2.9594, -2.9974, -2.9975) 50.075
2 x∗1 +�0�1�0�0� 1 1e-3 (-1.9697, -2.9954, -2.9975) 42.810
3 x∗2 +�0�1�0�0� 1 1e-3 (-0.97967, -2.9897, -2.9975) 37.603
4 x∗3 +�0�1�0�0� 1 1e-3 (0.011723, -2.9584, -2.9974) 34.363
5 x∗4 +�0�1�0�0� 1 1e-3 (1.0000, 1.0000, 1.0000) 0

Table XVI. Computational results for Problem 8 with n=5

k x
�0�
k � ! x∗k f �x∗k�

1 (-1, -1, -1, -1, -1) – –
(-0.97983, -0.99483, -0.99491,

-0.99491, -0.99492)
12.515

2 x∗1 +�0�1�0�0�0�0� 1 1e-3
(0.010455, -0.97941, -0.99483,

-0.99491, -0.99492)
10.630

3 x∗2 +�0�1�0�0�0�0� 1 1e-3
(1.0000, 1.0000, 1.0000, 1.0000,

1.0000)
0
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Table XVII. Computational results for Problem 8 with n=7

k x
�0�
k � ! x∗k f �x∗k�

1 (2, 2, 2, 2, 2, 2, 2) – –
(1.9899, 1.9897, 1.9896, 1.9896,

1.9896, 1.9896, 1.9898)
3.1095

2
x∗1 −

�0�1�0�0�0�0�0�0�
1 1e-3

(1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000)

0

Table XVIII. Computational results for Problem 8 with n=10

k x
�0�
k � ! x∗k f �x∗k�

1
(6, 6, 6, 6, 6, 6, 6, 6,

6, 6)
– –

(5.9490, 5.9979, 5.9980, 5.9980,
5.9980, 5.9980, 5.9980, 5.9980,

5.9980, 5.9980)
78.432

2
x∗1− (0.1, 0, 0, 0, 0,

0, 0, 0, 0, 0)
1 1e-3

(-1.9696, 5.9943, 5.9980, 5.9980,
5.9980, 5.9980, 5.9980, 5.9980,

5.9980, 5.9980)
73.450

3
x∗2+ (0.1, 0, 0, 0, 0,

0, 0, 0, 0, 0)
1 1e-3

(-0.97956, 5.9871, 5.9980, 5.9980,
5.9980, 5.9980, 5.9980, 5.9980,

5.9980, 5.9980)
71.884

4
x∗3+ (0.1, 0, 0, 0, 0,

0, 0, 0, 0, 0)
1 1e-3

(0.012709, 5.9476, 5.9979, 5.9980,
5.9980, 5.9980, 5.9980, 5.9980,

5.9980, 5.9980)
70.890

5
x∗4+ (0.1, 0, 0, 0, 0,

0, 0, 0, 0, 0)
1 1e-3

(1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000,

1.0000, 1.0000)
0


